本书是为国际文凭课程大学预科项目(IBDP)设计的数学辅导书,内容涵盖了IB标准难度的所有主题和高难度的前6个主题。全书分为20个模块,每个模块由Summary,Examples和Exercises这3部分组成。Summary给出本模块所用的数学概念;Examples提供大量的例题解法演示Exercises包含的习题有助于复习巩固数学概念和解题技巧。在本书的最后有6幅思维导图,可帮助学生明确数学概念,理清数学脉络。
目录
1 Function characters
Summary
Examples
A. Domain and range
B. Odd and even functions
C. Composite and inverse functions
Exercises
2 Function transformations
Summary
Examples
A. Dilation, reflection and translation
B. Graphs of and
Exercises
3 Exponents and logarithms
Summary
Examples
A. Exponents and exponential equations
B. Logarithms and logarithmic equations
Exercises
4 Basic functions
Summary
Examples
A. Linear and quadratic functions
B. Polynomial and rational functions
C. Exponential and logarithmic functions
Exercises
5 Trigonometric identities
Summary
Examples
A. Definitions of trigonometric ratios
B. Pythagorean identities
C. Compound angle identities
D. Double and half angle formulas
Exercises
6 Trigonometric functions
Summary
Examples
A. Graph of trigonometric functions
B. Trigonometric equations
C. Inverse trigonometric functions
Exercises
7 Lengths and areas in circles and triangles
Summary
Examples
A. Lengths (arc length, radius and perimeter)
B. Areas (area of a sector, area of a triangle and area of a segment)
C. The sine rule and its ambiguous case
D. The cosine rule
Exercises
8 Vectors and their operations
Summary
Examples
A. Using vectors to find area of a triangle
B. Parallel and perpendicular vectors
Exercises
9 Complex numbers
Summary
Examples
A. Operations of complex numbers
B. Modulus and argument of a complex number
C. Cartesian form, Modulus-argument form and Euler’s form
D. Conjugate of a complex number
E. De Moivre’s theorem
F. th roots of a complex number
Exercises目录
1 Function characters
Summary
Examples
A. Domain and range
B. Odd and even functions
C. Composite and inverse functions
Exercises
2 Function transformations
Summary
Examples
A. Dilation, reflection and translation
B. Graphs of and
Exercises
3 Exponents and logarithms
Summary
Examples
A. Exponents and exponential equations
B. Logarithms and logarithmic equations
Exercises
4 Basic functions
Summary
Examples
A. Linear and quadratic functions
B. Polynomial and rational functions
C. Exponential and logarithmic functions
Exercises
5 Trigonometric identities
Summary
Examples
A. Definitions of trigonometric ratios
B. Pythagorean identities
C. Compound angle identities
D. Double and half angle formulas
Exercises
6 Trigonometric functions
Summary
Examples
A. Graph of trigonometric functions
B. Trigonometric equations
C. Inverse trigonometric functions
Exercises
7 Lengths and areas in circles and triangles
Summary
Examples
A. Lengths (arc length, radius and perimeter)
B. Areas (area of a sector, area of a triangle and area of a segment)
C. The sine rule and its ambiguous case
D. The cosine rule
Exercises
8 Vectors and their operations
Summary
Examples
A. Using vectors to find area of a triangle
B. Parallel and perpendicular vectors
Exercises
9 Complex numbers
Summary
Examples
A. Operations of complex numbers
B. Modulus and argument of a complex number
C. Cartesian form, Modulus-argument form and Euler’s form
D. Conjugate of a complex number
E. De Moivre’s theorem
F. th roots of a complex number
Exercises